

The End-to-End Model of the Very Large Telescope Interferometer (VLTI)

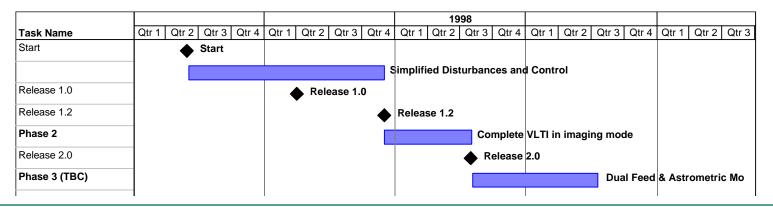
Bertrand Koehler, Christophe Denise European Southern Observatory (ESO)

Karl Schwarzschild Strasse, 2

D-85748 Garching -Germany-

http://www.eso.org

E-mail: bkoehler@eso.org


Presentation Overview

- Project overview and objectives
- General Architecture
- Main User Interfaces
- Main Model features
- Highlights of Modeling approach
 - Optics
 - Mechanics
 - Control
 - Disturbances
- Some typical output
- Conclusion

Project overview

- Precursor: The VLT Unit Telescope Model 1994-95
 - contract with Ball Aerospace, Khoros environment
- VLTI Model started in June 1996,
 - developed in-house in MATLAB/Simulink environment
- Resources/cost: ≈1.2 FTE (average) + Matlab licenses
- ⇒ Relatively small project, No attempt to generate a general-purpose tool
- Schedule:

Project Objectives (1/3)

General Objective:

- Produce a representation of the main output of the interferometer, i.e. the intensity produced by the superposition of the EM fields collected in
 - » a pupil plane, or
 - » an image plane,
 - » along a single line of site

Rationale:

- Support Design & System <u>Enginnering activities</u>
- Provide simulated output of the interferometer for a <u>Science Model</u>
- Provide a <u>diagnosis tool</u> during the <u>Commissioning</u> of the Interferometer

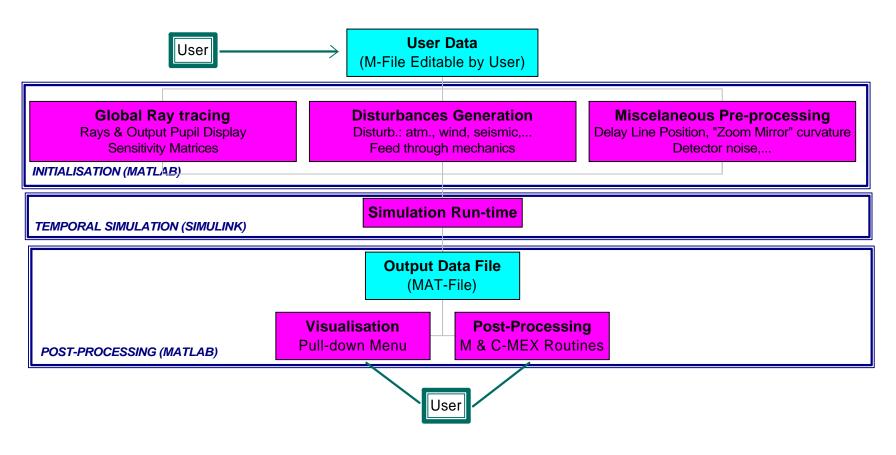
Project Objectives (2/3)

- Engineering objectives:
 - Analyse collective effects of disturbances
 - » in the time domain instead of Spectrum + quadratic sum
 - Analyse interaction of optics & control loops
 - » including cross-coupling between Fringe/Image/Pupil tracking
 - Validate & maintain the main VLTI error budgets
 - Study design alternatives when necessary and when having high impact at system level (e.g. UT Coudé Train, Dual Feed mode, etc.)
 - Complement to CODEV for specific optical analysis (e.g. global sensitivity analysis,...)
 - Provide representative simulated data to the Instrument Teams for instruments design
 - By-product: building the model can improve the understanding of "how the system works"

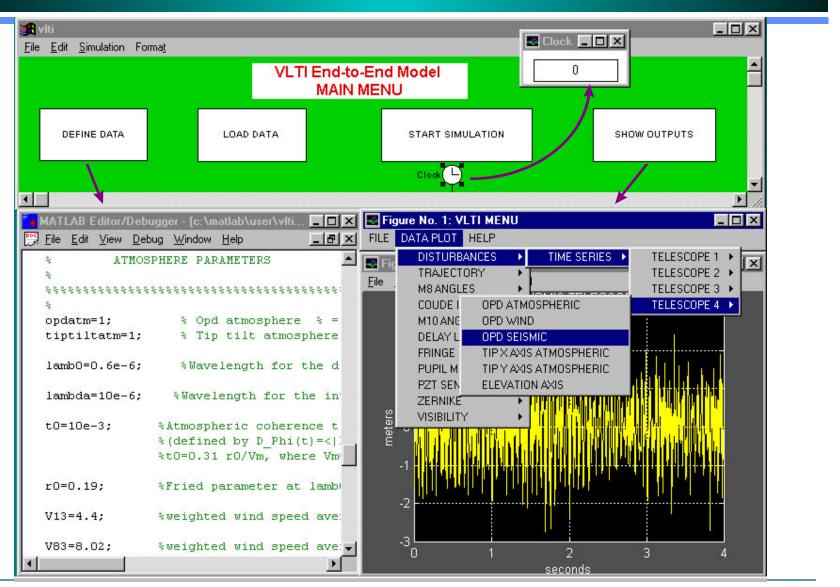
Project Objectives (3/3)

- Science Model (separate project):
 - Objective: provide simulated data as coming out from the instruments including:
 - » Detailed model of astronomical source
 - » Array configuration
 - » Detailed Instrument model
 - » Background, Detector & Photon Noise

in order to assess the final Science Performance


- Use the output from the Technical Model as input data
- ♦ UNIX, C++, Tcl/Tk
- ◆ 1 FTE (M. Schöller) since July 1997
- Diagnosis tool during the Commissioning
 - Can help understand problems observed
 - Check impact of possible modifications/improvement

General Architecture


MATLAB 5.1 / SIMULINK 2.1 Environment for PC

VLTI End-to-End Model Architecture

Main User Interfaces

The VLTI End-to-End Model. IMOS Workshop. Pasadena, 19-21 JAN 98

Main Model Features (1/3)

Modeling features

Optics	Mechanics	Control		
Build-in Ray Tracing	Linear models	Full Simulink		
Mirrors: flat, cylinder, sphere, conic	Frequency Response (FR) or State Space representation (SS)	capabilities		
"Perfect" surfaces	FR or SS computed	Linear detector		
Prescription errors but no	before-hand by FEM,	models		
figuring errors	and loaded from file	frequency resp. and noise		
5 DOF's / mirror	Direct interface with	Linear control		
Χ, Υ, Ζ, α, β	FEM	laws		
Figuring errors	Built-in Finite	Complete		
	Element capabilities	Detector models		
Photometry		Mode Switching		
Polarization				
Full Diffraction				
Dispersion				
Legend: Version 1 (done) Version 2 (in progress) Version 3 (TBC)				

Main Model Features (2/3)

Physical features

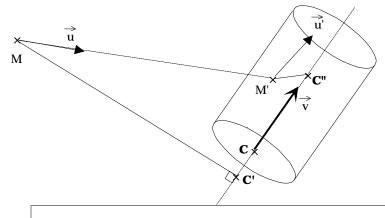
Object	VLTI Sub-systems	Disturbances
Point Source	4 Telescopes	Atmosphere
With associated Magnitude & Visibility (for Detectors)	among 4 UT and 30 AT stations	Piston,Tip/Tilt
Monochromatic	4 Delay Lines among 8 available Delay Lines incl. Variable Curvature Mirror	Wind load on Tel. - Piston, - Tip/Tilt
Diurnal motion	Idealized Instrument Pupil & Image plane	Seismic - Piston
Polychromatic	Main Control Loops - Fast Tip/Tilt, - Lateral Pupil Position, - Fringe Tracking	Atmosphere - Wave Front Error
		Internal Seeing
	Dual Feed mode	
Extended Object	"Real" Instruments	
Legend: Version 1 (done) Version 2 (in progress)	Version 3 (TBC)

Main Model Features (3/3)

User Interface features

Output parameters	Post-processing	GUI
Computed in User-	Plot of individual	Limited:
defined output plane	variables	Input: Edit M-File Run: Simulink GUI
For each beam:	Spot diagrams, PSF,	Ouput: Pull-down menu
Chief-Ray position, X, Y, ZChief-Ray OPL	Phase Map	
- Pupil Position X, Y, Z	Visibility v. Time	
- Phase Map (Zernike)		
Image pos. at Tel coudéPupil diameters		
	Combined Pupil Map	

Legend: Version 1 (done) Version 2 (in progress) Version 3 (TBC)


Highlights of Modeling Approach

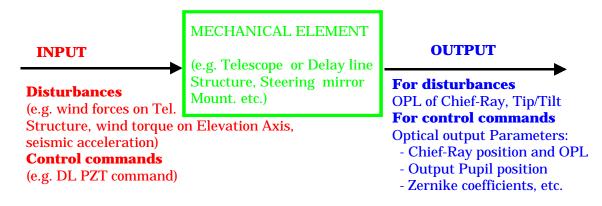
Optics Modeling

- Ray tracing using analytical formulae
- Sensitivity matrices computed during initialisation by modifying each Degree of Freedom

Output:

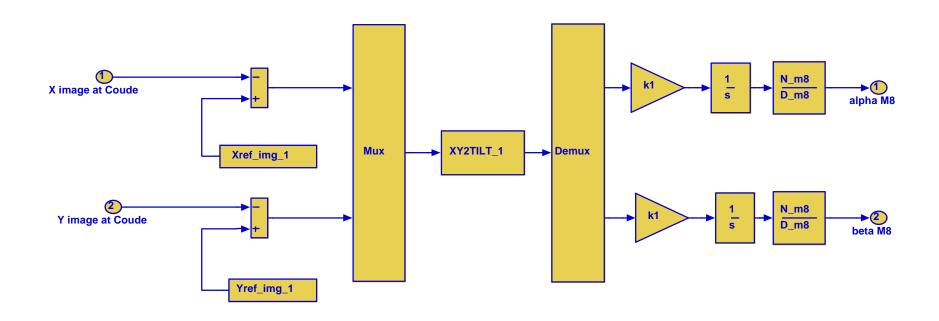
- » Chief ray position,
- » Optical Path Length of Chief Ray
- » Ouptut Pupil position
- » Phase map projected on Zernike modes
- » Additional parameters required by Control Loop (e.g. Image pos. at Coudé Focus

The equations giving M', \vec{u}' , and \vec{n}' are therefore:

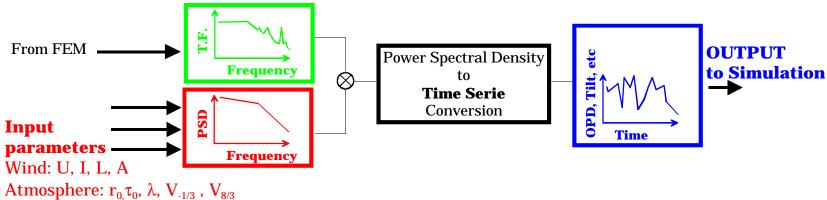

$$\begin{cases} a = 1 - (\vec{u} \cdot \vec{v})^2 \\ b = 2 \cdot \left[(\vec{u} \cdot \vec{v}) \cdot (\mathbf{MC} \cdot \vec{v}) - \mathbf{MC} \cdot \vec{u} \right] \\ c = \mathbf{MC} \cdot \mathbf{MC} - (\mathbf{MC} \cdot \vec{v})^2 - R^2 \\ \Delta = b^2 - 4 \cdot a \cdot c \\ d = \frac{-b + f \cdot l a g \cdot \sqrt{\Delta}}{2 \cdot a} \\ M' = M + d \cdot \vec{u} \\ \vec{n}' = -f \cdot l a g \times \frac{(\mathbf{MC} \cdot \vec{v}) \cdot \vec{v} - \mathbf{MC} + d \cdot \left[\vec{u} - (\vec{u} \cdot \vec{v}) \cdot \vec{v} \right]}{R} \\ \vec{u}' = \vec{u} - 2(\vec{u} \cdot \vec{n}') \cdot \vec{n}' \end{cases}$$

where
$$\begin{cases} flag = +1 \text{ If mirror is CONCAVE} \\ flag = -1 \text{ If mirror is CONVEX} \end{cases}$$

Highlights of Modeling Approach

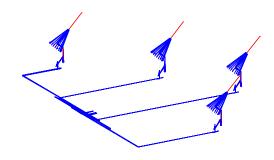

- Mechanics Modeling
 - For Disturbance effects: Linear models based on Transfer Functions Computed from FEM
 - » All modes included in numerical representation: $[f_i, TF(f_i)], i=1...N, f_i$ log spaced
 - ◆ For Control loops: State Space Representation, [Num,Den] or [a,b,c,d]
 - » Need model reduction
 - All FEM computations done off-line (ANSYS)

Highlights of Modeling Approach

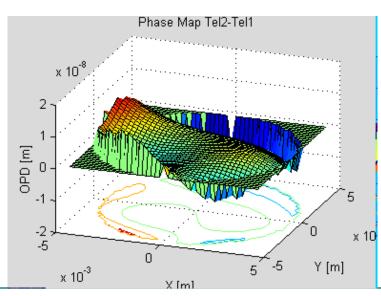

- Control loop Modeling
 - Full use of Simulink capabilities
 - Pre-processing of data during Initialisation (e.g. Gain setting, Sensor noise versus star magnitude, etc.)

Highlights of Modeling Approach

- Disturbances Modeling
 - Uses Analytical expressions of Power Spectral Densities (PSD) of Disturbance (wind speed, Atmospheric piston & G-tilt) or measured data (seimic acceleration).
 - Multiply by appropriate mechanical Transfer Function (TF)
 - Generate random time series of optical parameters: OPL, Tip/Tilt,...

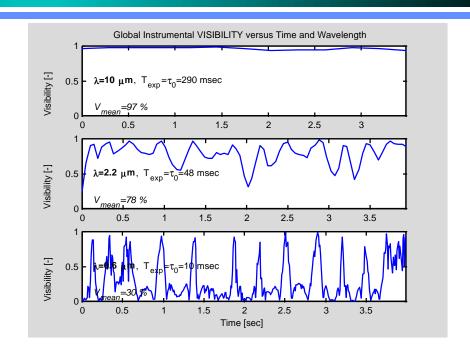


Atmosphere: $r_0, \tau_0, \lambda, V_{-1/3}, V_{8/3}$ Seismic: measurement file name



Some typical Output (1/2)

- Ray tracing plots
 - 2-D & 3-D views
 - Zoom capability
 - plot of pupil rays to locate pupil


- Phase Maps
 - For each beam or differential between two telescopes
 - Static or movie versus time
 - Selection of particular zernike modes

Some typical Output (2/2)

Visibility versus time

- Plus more under development...
 - Combined pupil intensity
 - Combined image intensity
 - Combined image movie, etc.

Conclusion

Status:

- ♦ Version 1.2 (complete optical train, simplified disturbances and control) available
- Version 2 (complete and detailed disturbances and control)
 under development

Outcome to date:

- Global optical sensitivity matrices
- Trade-offs on UT Coudé Train design
- Fluctuation of visibility versus time (calibration issue), and more...

Next steps

- More analysis with Version 1.2 and 2
- ♦ Version 3 (Dual Feed, Astrometric Mode, "actual" instruments)

to be defined